If it's not what You are looking for type in the equation solver your own equation and let us solve it.
36y^2-196-11=0
We add all the numbers together, and all the variables
36y^2-207=0
a = 36; b = 0; c = -207;
Δ = b2-4ac
Δ = 02-4·36·(-207)
Δ = 29808
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{29808}=\sqrt{1296*23}=\sqrt{1296}*\sqrt{23}=36\sqrt{23}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-36\sqrt{23}}{2*36}=\frac{0-36\sqrt{23}}{72} =-\frac{36\sqrt{23}}{72} =-\frac{\sqrt{23}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+36\sqrt{23}}{2*36}=\frac{0+36\sqrt{23}}{72} =\frac{36\sqrt{23}}{72} =\frac{\sqrt{23}}{2} $
| 10=-7+5/8w | | 10x–4=20;5 | | 7(x+2)=2(2x-4) | | 9u-u+-16u=18 | | 60x^2-326x-22=0 | | 2-(2x-4)+3x=9 | | 6c-9c=-15 | | 2(5x+2)+2x=16 | | -6x-57=-135 | | 19j+20j-16j+-9j-4j=-20 | | 10=22x-2 | | X=m4/m5 | | 5(3x+1)+2=25 | | 2(x=4)-x=x+8 | | 131-v=243 | | 8x5/2=256 | | 3x+4+4x=x+1+9 | | 3h-h-h+2h=18 | | (z+3)^2=-100 | | 5(3x+1))+2=25 | | -4h-7-5=-32 | | 17x–17x+3x=6 | | 15d-9d+2d=8 | | 27=2c+6c | | 220=-5(8x-12) | | r2+18r+73=-9 | | -10.5+m÷11.57=-2.748 | | -10-2x=-4+4x-6x | | 18c+-4c-12c+-10c+c=7 | | 5x+4-x=6x-2(x-2) | | 5a+3+4a=-35 | | 3r-r+4=10 |